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The attenuation of acoustic phonons due to linear processes involving any pair of magnons (nuclear
and electronic) is calculated for some antiferromagnets. Numerical estimates of the intensities from such
processes are made for RbMnF; and for MnF,. It is predicted that, in certain favorable cases, such effects
may be observable with present-day sensitivities at frequencies which are not near any of the single-spin-

wave resonant frequencies.

I. FORMALISM

Many magnetoelastic effects have been studied!:2
lately in the cubic antiferromagnet RbMnFi. In part
this is due to the fact that its anisotropy energy is
very small because the substance maintains a cubic
symmetry below its Néel temperature. Since many
effects are inversely proportional to the anisotropy
energy, this leads to relatively large signals.

In an earlier paper,! a general formalism was devel-
oped for treating a cubic antiferrcmagnet and was
applied to some acoustic properties including single-
magnon resonances. It is the purpose of this paper to
extend that work to investigate the problem of a pho-
non interacting with the spins via two magnons. A
derivation of the contribution to the linear? acoustic
attenuation from such processes is presented in this
section. In the next section the results are evaluated
for some of the two-magnon processes and are discussed
with respect to RbMnF;. With very slight modifica-
tions, the results are also applied to uniaxial antiferro-
magnets such as MnF,.

The formalism, notation, and approximations used
in Ref. 1 are used here, since the coupling mechanism
is essentially the same. That is, the phonons couple to
the electronic spins via the single-ion or volume mag-
netoelastic interaction. Since the nuclear and electronic
spins interact via a hyperfine term in the Hamiltonian,
this effectively couples the phonons to the nuclear spins
also.*

To lowest order in the single-ion magnetoelastic cou-
pling, the change in the (complex) phonon dispersion
relation due to the spins is

w*=wt(qQA) + (VM) {Xe; (qN) €;(qN) G1qiG imGm
X (=) (—=i8)7 [ d{T(Fu(lat) Fin(Va’t’)))
Xexp[iBuw,(t—1t") —iq- (1-1) ]}, (1)

where wo is the phonon frequency in the absence of the
spins, e;(g\) is the polarization vector of the phonons
with wave vector q and polarization A, and M is the
mass of a magnetic unit cell of the substance. The
coupling constants G;; and the combination of spin
operators F,; are given in Appendix B of Ref. 1. The
correlation functions (Z7°( )) are also defined in that
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reference. The corresponding term to lowest order in
the volume magnetoelastic coupling?® is

w*=we*(q\)
+(NM)7 3 ei(qh) e;(qN) Qs (a— o) Q;(on— )
X (i gmiae!) (giveres) (— i) (~i8)
X [ d{T(S(at)-S(a’t')S(out') - S(ant’)))

Xexp[iBw,(t—1")], (2)

where o is a site index,
Qi(a—a') = (Vo) iJ (a—a'),

and J is the nearest-neighbor exchange integral. It is
understood that w, approaches the real frequency w
from above the real axis after all time integrals and
frequency sums are performed.

The approximation used in Ref. 1 for the average
of four spin operators was the sum of all possible
factorizations in terms of lower-order correlation func-
tion. However, in that paper, only resonant terms,
those involving a single correlation function, were
studied. In this paper those terms proportional to a
product of two correlation functions are now consid-
ered [those terms in the first set of brackets in Eq.
(B4) of Ref. 1], and cross terms between the single-ion
and volume magnetostriction are neglected. After some
lengthy but straightforward algebra (very similar to
that of Ref. 1) the contribution to the phonon disper-
sion from nonresonant terms is obtained:

w*=w?(q\) —16(NM)™ Zk: {[Car’+ (Qaq- €)* [ Daze

+[Cp*+ (Qaq-e)2]Dyy,
+2[CoaCry— (Qaq- €)*]Dryry+2C1 Doz}, (3)

where D( w) is the limit of D(w,) as w, approaches w
from above the real axis and

Dijim(wy) =71 Z: D;;(aa, ¢+k, w,4w;)Dis(aa, k, o3).

(4)

In these equations the D’s are the spin response func-
tions defined and evaluated in Ref. 1, Q is defined in
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Ref. 5, @ is the spacing between magnetic ions, and
the C’s are complicated functions of ¢, e(q, \), and the
magnetic sublattice orientations. The C’s are given for
cases A and B of Ref. 1 in Egs. (5) and (6), respec-
tively:
Cor=Gu(3¢:0.—q-€) (S—35.2) /S¢*

+G44[<q, e)zSzZ/ZSOQ

_[(qr e)2+ (qy e)y]SESz/\/Z_SO2Jy
Cpy=—13Gu(3q.e.—q-e) —1Gu(q, €).,
Coy=$Gn (dey_ qzex) S2/So

+G44[(q) e)ll_ (qy e) ﬁ]SZ/Zslz'SO)

where (q, e),=g¢,e.+g.¢, with cyclic variations for y
and z; and for case B

Car=3G1(q-e—3g.e.) +3Gu(q, ).,
Cypy=3Gu(3q.e.—q-e)
+Gu[—5(q, e)+3[(q, e),—(q, €).]]. (6)

The frequency sum in Eq. (4) can easily be per-
formed. However, because of the complexity of the
results, we shall now specialize to the “spin-flop” case,
where the net sublattice magnetization is almost paral-
lel to the applied field. In this case D,, is negligible
and the remaining D’s can be expressed simply as

(5)

Dgg(lla, q, w)

= 2 Au(Q) {[o—wi(q) '~ [wtwi()) I}, (7)
where £ is & or ¢ (in the notation of Ref. 1) and ¢ runs
over the two electronic modes (denoted e+ and e—)
and the two nuclear modes (denoted n+ and n—).

For small wave vectors the only nonzero A’s [as seen
from Eqgs. (3.1) of Ref. 1] are

Azer=wpSo/2we(q),
Age_ = wES()/zwe- (q) )

A gt = wpPon"wnESo/ wer* (¢) wnt (),

(8)

Agn_ = szwNszESO/w94 (9) Wn— (Q) .

In these equations wg is the exchange frequency, wy is
the unpulled nuclear frequency, and wyz is the hyper-
fine frequency.

Thus, in the spin-flop case,

Degnn=13 Z Aei(g+k) Agi (k) {[COth%ﬂwi(Q“l‘k)

— coth3fw;(k) J{[wi(k) —wi(g+k) +wtis]!
—[wi(g+k) —w;i(k) +wtis]}
+[coth3Bw; (k) +cothiBuwi(g+%) ]

X {Lwi (k) +wi(g+k) +wti6]

—[—wi(k) —wi(g+k)totisl ), (9)
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where 6 is an arbitrarily small positive quantity. With
the frequencies which we will consider (less than 10
sec™!) ¢ may be set equal to zero in Eq. (9).

II. DISCUSSION AND CONCLUSIONS

It is now easy to obtain the contributions to the
absorption from the various two-magnon processes. As
a function of the dimensionless variable x=*%a, the
nuclear and electronic eigenfrequencies may be written
as [Eq. (3.2) of Ref. 1]

wng (%) = wy[1—2wpwne/wly (x) ]12,
We (%) = [wex2(0) + Ewpe? V2. (10)

These are valid if <1 and £ is a dimensionless param-
eter of order one. These formulas are probably only
valid for even smaller x because of spin-wave inter-
actions. Since the imaginary part of D contains & func-
tions and, for small wave vectors, the £ dependence of
the modes depends only on | % |, the remaining inte-
grals are trivial.

There are many possible two-magnon processes. For
example, the contribution to the absorption coefficient®
a from the formation of two e4= magnons is

a(2e) = Al [1— (wer (0) /w)*J[wes (0) /],  (11)

where w.(0) is the electronic frequency at zero wave
vector and

A =280G1/ 1 Bhwrt M vh,
= (Cony®/ ¢*G1i®) + (Qa/Gu) % €,

where Sy is the average spin, % is the velocity of the
sound wave, and B8 is 1 over the Boltzmann constant
times the temperature.
The absorption increases as w/2w.4(0) increases be-
cause the density of available states becomes larger.
The contribution to a from two #-4 magnons is

a(2ny) = Al [wn®/ 2wsone 7% (v; %),
F(, 30) = (1= [1— (yo/y) J*(1—y?) 712,
Yo=wny (0) /.

(12)

(13)
y=w/2wy,

This formula has been expressed in terms of the fre-
quency in units of twice the unpulled nuclear frequency
and the real nuclear frequency at zero wave vector
divided by the unpulled nuclear frequency. Thus y
always lies between y, and one because w,(q) lies be-
tween w,(0) and wy.

In contrast to the case for two e magnons, the
absorption is largest for w near 2w,y (0) for two n=4
magnons. The reason for this is that the wave-vector-
dependent coupling to the nuclear modes is inversely
proportional to [wey(¢) ] (This can be thought of as
arising from energy denominators in a perturbation
scheme.) Since w.4(q) increases with increasing ¢, the
interaction is considerably stronger for nuclear magnons
of small wave vector. This stronger coupling more than
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compensates for the reduced density of available states
at small ¢. In addition, since the absorption depends
only on magnons of very small ¢ (¥<1) except for w
very near to 2wy, spin-wave interaction should be un-
important.

The contributions from one # magnon plus one e
magnon can also be easily calculated. However, the
process is probably not separated enough in frequency
from the much larger single e-magnon resonance to be
distinguished experimentally.

Besides the approximations mentioned earlier (in-
cluding those of Ref. 1), it has been assumed that Sfiw
is much less than 1 in Eqgs. (11) and (13). Using pub-
lished values ? for the parameters involved, 4 is ap-
proximately 0.042 cm™ at 4°K for RbMnF;. The quan-
tity £ was estimated to be about 0.12 by assuming only
nearest- and next-nearest-neighbor exchange integrals
and fitting them via a Weiss theory to the two param-
eters Ty=383.6°K and Ty=—160°K. The quantity
wy (2wrwye) Y2 is about 0.13 in this substance.

In RbMnF; the double nuclear magnon decay of
longitudinal phonon could contribute more than 0.005
cm™! to a because presumably’ the volume magneto-
striction is considerably larger than the single-ion mag-
netostriction. The contribution is largest when the nu-
clear frequency is pulled the most. This is reflected in
f(¥; %), which has a maximum of 1 if yo=0. However,
its maximum approaches zero as

(32/16) (1—ye*)

as ¥ approaches 1. Thus this function depends strongly
on the strength of the coupling of the nuclear and elec-
tronic modes.

Equations (11)-(13) are almost exactly the same
for an almost cubic uniaxial antiferromagnet at low
temperatures with a magnetic field along the special

axis. The angular factors from the single-ion magneto-
striction are, of course, different. For example, the
contribution to a due to the volume magnetostriction
formation of an #+-, n— pair are the same as given by
Eq. (13) except that

y0=[wn1-(0) +wa-(0) ]/ 20w,

ot (0) = wakwoYn/Ye (14)
and
wn=wy (1—2wrwng/werwe- ) 112,
Weptwo— = 2L wp (watwng) ]— wo? (15)

where wo is the usual Larmour frequency of the elec-
trons. Except for the anisotropy energy, the param-
eters for MnF;, are close to those for RbMnF;. How-
ever, one would have to have a large magnetic field
(105 Oe) in order to pull yo small enough to make the
effect comparable in size to that for RbMnFs.

Thus we have estimated the contributions from two
magnon processed to the ultrasonic attenuation in
antiferromagnets. The basic approximations were the
random-phase approximation for the single-particle re-
sponse functions and the decomposition made for the
product of four spin operators. Effects due to the
lifetimes of the modes should be unimportant except
near the edges of the absorption spectra. However,
inhomogeneities that cause a spread of anisotropy ener-
gies or soften the directions of sublattice magnetizations
will smear the effect out.
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